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Abstract. Directed spiral percolation (DSP), percolation under both directional and rotational constraints,
is studied on the triangular lattice in two dimensions (2D). The results are compared with that of the 2D
square lattice. Clusters generated in this model are generally rarefied and have chiral dangling ends on
both the square and triangular lattices. It is found that the clusters are more compact and less anisotropic
on the triangular lattice than on the square lattice. The elongation of the clusters is in a different direction
than the imposed directional constraint on both the lattices. The values of some of the critical exponents
and fractal dimension are found considerably different on the two lattices. The DSP model then exhibits
a breakdown of universality in 2D between the square and triangular lattices. The values of the critical
exponents obtained for the triangular lattice are not only different from that of the square lattice but also
different form other percolation models.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 64.60.-i General studies of phase
transitions – 72.80.Tm Composite materials

1 Introduction

A new site percolation model, directed spiral percola-
tion (DSP), is recently introduced by Santra [1,2]. The
DSP model is constructed imposing both directional and
rotational constraints on the ordinary percolation (OP)
model [3]. The directional constraint is in a fixed direction
in space and the empty sites in that direction are acces-
sible to occupation. Due to the rotational constraint the
sites in the forward direction or in a rotational direction,
say clockwise, are accessible to occupation. The direction
of the rotational constraint is not fixed in space and it
depends on the direction from which the present site is
occupied. Percolation under only directional or only ro-
tational constraints have been studied independently and
the corresponding models are known as directed percola-
tion (DP) [4] and spiral percolation (SP) [5] respectively.
It is already known that both DP and SP models belong to
different universality classes other than that of OP. The
DSP model is essentially a combination of DP and SP
models and it is constructed by imposing both the con-
straints simultaneously in the same model. Recently, the
DSP model has been studied on the square lattice in 2 di-
mensions (2D) [1,2]. It has been found that a new type
of percolation cluster is generated in this model. They are
highly rarefied, anisotropic and chiral in nature. The elon-
gation of the clusters is in a different direction from the
imposed directional constraint. The values of the critical
exponents obtained are different from that of the OP, DP
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and SP. Consequently, the DSP model belongs to a new
universality class.

In this paper, the DSP model is studied on 2D trian-
gular lattice and the results are compared with that of
the square lattice data. The clusters are found more com-
pact and less anisotropic on the triangular lattice than
on the square lattice. Most interestingly, it is found that
the values of the fractal dimension and some of the criti-
cal exponents of the DSP model are considerably different
on the square and triangular lattices. Thus, there exists
a breakdown of universality in the DSP model when the
results of the square and triangular lattices are compared.
In the following, the DSP model will be described briefly.
The results of the triangular lattice will be then presented
and compared with the square lattice data.

2 The model

Detailed description of the model on the square lattice is
given in reference [1]. A brief demonstration will be given
here on the triangular lattice. A left to right directional
constraint and a clockwise rotational constraint are im-
posed on the system defined on a triangular lattice of size
L × L. Due to the directional constraint an empty site
on the right of an occupied site and due to the rotational
constraint the empty sites in the forward direction or in
the clockwise direction can be occupied. To generate clus-
ters under these two constraints a single cluster growth
algorithm is developed in reference [1] following the orig-
inal algorithm of Leath [6]. In this algorithm, the central
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site of the lattice is occupied with unit probability. All
six nearest neighbours of the central site on the triangular
lattice can be occupied with equal probability p in the first
time step. As soon as a site is occupied, the direction from
which it is occupied is assigned to it. Selection of empty
nearest neighbour in the next MC time steps is illustrated
in Figure 1. Two long arrows from left to right in Figure 1
represent the directional constraint. The presence of the
rotational constraint is shown by the encircled dots. The
black circles represent the occupied sites and the open cir-
cles represent the empty sites. The direction from which
the central site is occupied is represented by a short thick
arrow. Now the nearest neighbours of the central occupied
site eligible for occupation will be identified. The dotted
arrow indicates the eligible empty site for occupation due
to the directional constraint and the thin arrows indicate
the eligible empty sites for occupation due to the rota-
tional constraint. Since the directional constraint is to the
right, site 4 is always eligible for occupation. The rota-
tional constraint acts in the forward or in the clockwise
direction with respect to the direction of approach to the
present occupied site. Since the central site is approached
from 2, there are three sites, site 5 in the forward direction
and sites 6 and 1 in the rotational direction, eligible for
occupation due to rotational constraint. Note that, on the
square lattice only two empty sites due to the rotational
constraint were eligible for occupation at any MC step. It
is also important to note that, in this model an occupied
site can be reoccupied from a different direction due to
the rotational constraint [1]. A site is forbidden for occu-
pation from the same direction. On the triangular lattice,
a site then could be occupied at most 6 times from 6 differ-
ent directions. Due to the reoccupation of occupied sites,
cluster generation is time consuming in the rotationally
constrained models [7].

After selecting the eligible sites for occupation, they
are occupied with probability p. The coordinate of an
occupied site in a cluster is denoted by (x,y). Periodic
boundary conditions are applied in both directions and
the coordinates of the occupied sites are adjusted accord-
ingly whenever the boundary is crossed. At each time
step the span of the cluster in the x and y directions
Lx = xmax −xmin and Ly = ymax − ymin are determined.
If Lx or Ly ≥ L, the system size, then the cluster is con-
sidered to be a spanning cluster. The critical percolation
probability pc is defined as below which there is no span-
ning cluster and at p = pc a spanning cluster appears for
the first time in the system.

3 Results and discussions

Simulations are performed on the triangular lattice of sev-
eral different lattice sizes from L = 128 to L = 2048. The
cluster size distribution Ps(p) is defined as Ps = Ns/Ntot

where Ns is the number of s-sited finite clusters in a total
of Ntot clusters generated. The percolation threshold pc at
which a spanning cluster appears for the first time in the
system is determined by generating Ntot = 5×104 clusters
at different site occupation probability p. The probability
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Fig. 1. Selection of eligible nearest neighbors for occupation
of an already occupied site. Black circles are the occupied sites
and open circles are the empty sites. Two thick long arrows
from left to right represent the directional constraint. The pres-
ence of clockwise rotational constraint is shown by the encircled
dots. The eligible nearest neighbors of the central occupied site
will be selected here for occupation. Six nearest neighbours of
the central site on the triangular lattice are marked as 1 to 6.
The central site is occupied from the site 2, marked by a thick
arrow. Due to directional constraint, site 4 on the right of the
occupied site, is always eligible for occupation and it is indi-
cated by a dotted arrow. Due to rotational constraint, sites 5, 6,
and 1 are eligible for occupation and they are indicated by thin
arrows.

to have a spanning cluster at a given site occupation prob-
ability p is given by Psp = nsp/Ntot = 1−∑′

s Ps(p), where
nsp is the number of spanning clusters out of Ntot clus-
ters. The percolation threshold pc is determined from the
maximum slope (dPsp/dp)max of the curve Psp versus p.
In Figure 2, Psp and dPsp/dp are plotted against p for
L = 2048. The percolation threshold pc could be identified
as pc = 0.5700 ± 0.0005 corresponding to the maximum
slope. The derivative is calculated using the central differ-
ence method for the data points collected in an interval
of 0.0005.

An infinite cluster generated on the triangular lattice
of size L = 256 at pc = 0.5700 is shown in Figure 3. The
black dots are the occupied sites and the solid black circle
on the upper left corner is the origin of the cluster. It
could be seen that the elongation of the spanning cluster
is almost along the left upper to the right lower diagonal of
the lattice as it was seen on the square lattice. In the case
of charged particles, this is due to the development of Hall
voltage across the sample and perpendicular to the applied
in-plane electric field. As a result, an effective directional
field is developed along the left upper to the right lower
diagonal of the lattice. It has already been observed on the
square lattice that the DSP clusters are not merely the
DP clusters in the presence of the effective field. The DSP
clusters contain features other than the DP clusters. The



S. Sinha and S.B. Santra: Breakdown of universality in directed spiral percolation 515

0.564 0.567 0.570 0.573p
0.0

0.2

0.4

0.6

P sp

70

80

90

100

dP
sp

/d
p

pc

Fig. 2. Plot of spanning probability Psp and the slope dPsp/dp
versus p. The circles represent Psp and the squares represent
the slope dPsp/dp. The critical probability pc is determined
from the maximum slope. For the triangular lattice, it is found
that pc = 0.5700 ± 0.0005 as indicated by an arrow.

Fig. 3. An infinite cluster on a 256× 256 triangular lattice at
p = 0.5700 is shown. The black dots are the occupied sites. The
solid black circle on the upper left corner is the origin of the
cluster. The cluster has holes of almost all possible sizes. The
elongation of the cluster is along the upper left to the lower
right diagonal and not along the imposed directional constraint
from left to right. The dangling ends are clockwisely rotated.
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Fig. 4. Number of boxes NB(ε) is plotted against the box size
ε. Data are averaged over 50, 000 spanning clusters generated
on a triangular lattice of size L = 2048. The fractal dimension
is found df = 1.775 ± 0.004. In the inset, df is plotted against
1/Nsp, the number of spanning clusters. It could be seen that
the value has converged with the realizations.

clusters here contain holes of almost all possible sizes and
it has clockwisely rotated (chiral) dangling ends. It could
also be noticed that the infinite cluster on the triangular
lattice is more compact and less anisotropic in comparison
to the infinite cluster on the square lattice.

The fractal dimension df of the infinite clusters at
pc = 0.5700 on the triangular lattice of size L = 2048
is determined by the box counting method. The number
of boxes NB(ε) is expected to grow with the box size ε
as NB(ε) ∼ εdf where df is the fractal dimension. In Fig-
ure 4, NB(ε) is plotted against the box size ε. The data
are averaged over 5× 104 spanning clusters. A reasonably
good straight line is obtained in the log− log scale. The
fractal dimension is found df = 1.775 ± 0.004. The er-
ror is due to the least square fitting of the data points
taking into account the statistical error of each point. In
order to check the convergence of the value of the frac-
tal dimension, df is plotted against 1/Nsp in the inset of
Figure 4. It could be seen that the value of df remains un-
changed over 104 to 5 × 104 spanning clusters. The value
of df has also been estimated from finite size (FS) scal-
ing S∞ ∼ Ldf , where S∞ is the size of the largest clus-
ter at p = pc. The lattice size L changes from 27 to 211.
It is found that df (FS) = 1.80 ± 0.03, which is within
the error bar of the other estimate. The fractal dimen-
sion df obtained here is higher than that of df ≈ 1.733 [1]
(df (FS) ≈ 1.72 [2]) on the square lattice. Also notice that
the value of df obtained here is smaller than the fractal
dimensions obtained in OP (91/48 [8]) and SP (1.969 [9])
and it is slightly higher than DP (1.765 [7]). Vacancies are
generated into the cluster as it grows. At the same time,
due to the higher number of branching on the triangular



516 The European Physical Journal B

lattice the cluster penetrate into itself more and more than
on the square lattice. As a result, the infinite clusters are
less rarefied on the triangular lattice than on the square
lattice.

Since the fractal dimension df is different from that of
the square lattice value, it is then expected that the values
of the other critical exponents will also be different form
that of the square lattice in order to satisfy the scaling
relations among the critical exponents. The critical expo-
nents related to the different moments of the cluster size
distribution Ps(p) are now estimated. The scaling function
form of the cluster size distribution Ps(p) for single clus-
ter growth technique, in which the central site is occupied
with unit probability, is assumed to be

Ps(p) = s−τ+1f[sσ(p − pc)] (1)

where τ and σ are two exponents. The assumed form of
the scaling function Ps(p) is the same as that of the square
lattice. The first moment χ =

∑′
s sPs(p) corresponds to

the average cluster size. Next two higher moments are
defined as χ1 =

∑′
s s2Ps(p) and χ2 =

∑′
s s3Ps(p). The

primed sum represents the sum over all the finite clusters.
As p → pc, the moments χ, χ1, and χ2 of Ps(p) become
singular with their respective critical exponent γ, δ, and η.
The critical exponents are defined as

χ ∼ |p−pc|−γ , χ1 ∼ |p−pc|−δ, & χ2 ∼ |p−pc|−η. (2)

To estimate the values of γ, δ and η on the triangular lat-
tice, the average cluster size χ and two other higher mo-
ments χ1 and χ2 are measured generating 5 × 104 finite
clusters below pc for different p values on several lattice
sizes. In Figure 5, χ, χ1 and χ2 are plotted against |p−pc|
for the system size L = 2048. The circles represent χ,
the squares represent χ1 and the triangles represent χ2.
The values of the exponents obtained are γ = 1.98± 0.01,
δ = 4.30 ± 0.02 and η = 6.66 ± 0.04 for L = 2048. The
errors quoted here are the standard least square fit er-
ror taking into account the statistical error of each single
data point. Because of the error bar ∆pc = 0.0005 in the
threshold, all the exponents have also been estimated for
two other critical probabilities pc±∆pc. The values of the
exponents obtained for p = 0.5695 are γ ≈ 1.96, δ ≈ 4.27,
and η ≈ 6.60 whereas for p = 0.5705 they are γ ≈ 2.00,
δ ≈ 4.33 and η ≈ 6.71. The values of the critical expo-
nents are then taken as: γ = 1.98 ± 0.02, δ = 4.30 ± 0.04
and η = 6.66 ± 0.08. The values of the critical exponents
at the optional thresholds pc ± ∆pc are now within error
bars. A comparison of the values of the critical exponents
obtained on the triangular and square lattices is made in
Figure 6 for several lattice sizes. In Figure 6, the values of
γ, δ and η are plotted against the inverse system size 1/L.
The squares represent the square lattice data and the tri-
angles represent the triangular lattice data. The data for
the square lattice is taken from reference [1] except for
L = 2048. In reference [1], data were reported upto the
maximum lattice size L = 1024. For the sake of compari-
son with L = 2048 triangular lattice data, new estimates
of the critical exponents have also been made on L = 2048
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Fig. 5. Plot of the first, second and third moments χ, χ1, and
χ2 of the cluster size distribution versus |p− pc| for a triangu-
lar lattice of size L = 2048. Different symbols are: circles for
χ, squares for χ1, and triangles for χ2. The solid lines repre-
sent the best fitted straight lines through the data points. The
corresponding critical exponents are found as γ = 1.98 ± 0.02,
δ = 4.30 ± 0.04, and η = 6.66 ± 0.08.
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Fig. 6. Plot of the exponents γ, δ and η against the in-
verse system size 1/L. The system sizes considered are: L =
128, 256, 512, 1024 and 2048. The squares represent the square
lattice data and the triangles represent the triangular lattice
data. The exponents are extrapolated upto L → ∞ and the
extrapolated values are marked by crosses. It can be seen that
the exponents are significantly different on the two lattices.
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square lattice. The results of L = 2048 square lattice are in
good agreement with that of the smaller system sizes. On
the square lattice of size L = 2048, the values of the criti-
cal exponent obtained are: γ = 1.85±0.01, δ = 4.01±0.04
and η = 6.21 ± 0.08. The results on both the lattices are
then extrapolated upto L → ∞, the infinite system size.
The extrapolated values of the exponents are marked by
crosses. The values of the critical exponents are found very
different (beyond the error bars) on the square and trian-
gular lattices. The triangular lattice values of the expo-
nents are higher than that of the square lattice. The clus-
ters then grow much larger in size on the triangular lattice
than on the square lattice for a given p. This might be due
to higher number of branching possibilities on the trian-
gular lattice. Also notice that the value of 2δ − γ = 6.62
is very close to the value of the exponent η = 6.66. The
values of the exponents then satisfy the scaling relation
η = 2δ − γ [1] within error bars. The exponents are not
only different from the square lattice values but also dif-
ferent from that of other percolation models, OP [1,8],
DP [1,10] and SP [1,5,7].

There are two connectivity lengths, ξ‖ and ξ⊥, for
the anisotropic clusters. Here, ξ‖ is along the elonga-
tion of the cluster and ξ⊥ is along the perpendicular di-
rection to the elongation. The connectivity lengths are
defined as ξ2

‖ = 2
∑′

s R2
‖sPs(p)/

∑′
s sPs(p) and ξ2

⊥ =
2

∑′
s R2

⊥sPs(p)/
∑′

s sPs(p) where R‖ and R⊥ are the radii
of gyration with respect to two principal axes of the clus-
ter. They are estimated from the eigenvalues of the mo-
ment of inertia tensor, a 2 × 2 matrix here. ξ‖ and ξ⊥
diverge with two different critical exponents ν‖ and ν⊥ as
p → pc. The critical exponents ν‖ and ν⊥ are defined as

ξ‖ ∼ |p − pc|−ν‖ & ξ⊥ ∼ |p − pc|−ν⊥ . (3)

The connectivity lengths, ξ‖ and ξ⊥, for the system size
L = 2048 are plotted against |p − pc| in Figure 7. Data
are averaged over 5 × 104 clusters. The squares represent
ξ‖ and the circles represent ξ⊥. The corresponding expo-
nents are ν‖ = 1.36 ± 0.02 and ν⊥ = 1.23 ± 0.02. The
errors quoted here are the least square fit errors. The
values of the exponents are also estimated at pc ± ∆pc.
For p = 0.5695, the values obtained are ν‖ ≈ 1.35 and
ν⊥ ≈ 1.21 and for p = 0.5705, the values obtained are
ν‖ ≈ 1.37 and ν⊥ ≈ 1.24. There is a little variation and
the values of the critical exponents are approximated as:
ν‖ = 1.36±0.02 and ν⊥ = 1.23±0.02. The error bars now
include the values of ν‖ and ν⊥ at the optional pcs. To com-
pare the square and triangular lattice data, simulations
have been performed on other smaller system sizes. In
Figure 8, the exponents ν‖ and ν⊥ are plotted against the
inverse system sizes 1/L for both the square and triangular
lattices. The squares represent the square lattice data and
the triangles represent the triangular lattice data. Data
of the square lattice is taken from reference [1] except
for L = 2048. New estimates of the exponents are also
made on L = 2048 square lattice. The exponents are ex-
trapolated upto L → ∞ and they are marked by crosses.
Notice that, the exponent ν‖ is almost the same as that
of the square lattice value (≈ 1.33) whereas ν⊥ is higher
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Fig. 7. The connectivity lengths, ξ‖ and ξ⊥, are plotted against
|p − pc| for a triangular lattice of size L = 2048. The circles
represent ξ⊥ and the squares represent ξ‖. The solid lines rep-
resent the best fitted lines through the data points. The critical
exponents are found as ν‖ = 1.36± 0.02 and ν⊥ = 1.23± 0.02.
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Fig. 8. The connectivity exponents ν‖ and ν⊥ are plotted
against the inverse system size 1/L for the square and trian-
gular lattices. The system size changes form L = 128 to 2048
as in Figure 6. The squares represent the square lattice data
and the triangles represent the triangular lattice data. Extrap-
olated values to the infinite system size (1/L = 0) are marked
by crosses. The value of ν⊥ seems to be different on the two
lattices whereas ν‖ is close to the square lattice value.
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Table 1. Comparison of the critical exponents and fractal dimension of the DSP model measured on the square and triangular
lattices. For the square lattice, the values within parenthesis are the suggested rational fractions for the values of the critical
exponents in reference [1] which satisfy the scaling relations exactly. Some of the critical exponents and the fractal dimension
are significantly different on the two lattices.

Lattice Type df γ δ η ν‖ ν⊥
Square [1]: 1.733 ± 0.005 1.85 ± 0.01 4.01 ± 0.04 6.21 ± 0.08 1.33 ± 0.01 1.12 ± 0.03

(12/7) (11/6) (24/6) (37/6) (4/3) (7/6)

1.72 ± 0.02 (FS)

Triangular: 1.775 ± 0.004 1.98 ± 0.02 4.30 ± 0.04 6.66 ± 0.08 1.36 ± 0.02 1.23 ± 0.02

1.80 ± 0.03 (FS)

than that of the square lattice (≈ 1.12). Both the ex-
ponents are also different form that of DP model [1,10].
The hyperscaling relations 2δ − 3γ = (d − 1)ν⊥ + ν‖ and
(d − df )ν⊥ = β = δ − 2γ [1] are satisfied marginally:
2δ−3γ = 2.66±0.06 whereas (d−1)ν⊥ +ν‖ = 2.59±0.04
and δ−2γ = 0.34±0.06 whereas (d−df )ν⊥ = 0.28±0.03.
It is already known that the hyperscaling is violated in
directed percolation [11]. In the case of DSP, the hyper-
scaling relations were found satisfied on the square lattice
whereas on the triangular lattice they are “marginally”
satisfied. The ratio of the connectivity lengths goes as
ξ‖/ξ⊥ ∼ |p − pc|−∆ν where ∆ν = ν‖ − ν⊥. For the square
lattice, ∆ν is approximately 0.21 whereas for the trian-
gular lattice, it is approximately 0.13. Thus, the clusters
are less anisotropic on the triangular lattice. This is be-
cause of more flexibility given to the spiraling constraint
which makes the cluster not only compact but also less
anisotropic.

The values of the critical exponents and fractal dimen-
sion obtained in the above study for the triangular lattice
are summarized and compared with the square lattice data
in Table 1. The values in the parenthesis are the suggested
rational fractions for the values of the critical exponents
on the square lattice. These rational fractions satisfy the
scaling relations exactly including the hyperscaling rela-
tions. It can be seen that some of the critical exponents
and the fractal dimensions are considerably different on
the square and triangular lattices for the DSP model. Ac-
cording to the theory of critical phenomena, the values of
the critical exponents are independent of the underlaying
lattice structure in the same spatial dimension. As a con-
sequence, the systems defined on different lattices in the
same space dimension then belong to the same universal-
ity class. Since the values of the critical exponents of the
DSP model differ on the square and triangular lattices
in 2D, the DSP model then exhibits a breakdown of uni-
versality. This is the first percolation model which shows
breakdown of universality on two different lattices in the
same spatial dimension. It is already seen in the above
discussion that the flexibility in the spiraling constraint
makes the clusters compact and less anisotropic. A pos-
sible reason for different critical behaviour on the square
and triangular lattices may be due to different scaling be-
haviour of the finite clusters below percolation threshold
on the two lattices. Below pc, the finite clusters are called
lattice animals [12]. Lattice animals without any loop are

known as lattice trees. Though the spiral lattice animals
have the same scaling form on the square and triangular
lattices, it has been found that the spiral trees (lattice an-
imals without loops) follow two different scaling relations
on the square and triangular lattices and belong to two dif-
ferent universality classes [13]. In the asymptotic n → ∞
limit, the number of spiral lattice site trees (an) of n-sites
on the triangular lattice obey the scaling relation given by
an ≈ λnδ

n−θ [13] whereas on the square lattice it is given
by an ≈ λnn−θ [14], where δ and θ are two exponents and
λ is known as the growth parameter. The origin of different
scaling forms for the spiral lattice site trees on the square
and triangular lattices is due to the fact that they can not
have branching on the triangular lattice except at the ori-
gin whereas on the square lattice branching is possible at
any point. The radius of gyration exponent of spiral trees
was also found different on the square (ν ≈ 0.653) and
triangular lattices (ν ≈ 0.618) [13]. Another lattice sta-
tistical model, the spiral self-avoiding walks (SAW) also
exhibit breakdown of universality on the square and tri-
angular lattices. The asymptotic (large n) behaviour of
the number of walks Sn is given by Sn ≈ An−γ exp(λ

√
n),

where A = 2−2 × 3−5/4π, γ = 7/4, and λ = 2π/
√

3 for
the square lattice [15] and A = 21/4 × 3−7/4π, γ = 5/4,
and λ = π/

√
2/3 for the triangular lattice [16]. Notice

that the scaling relation for the spiral lattice site trees is
similar to that of the spiral SAWs. It should be mentioned
here that the values of the critical exponents and the scal-
ing behaviour of the cluster related quantities in the SP
model (percolation in the presence of rotational constraint
only) are the same on the square and triangular lattices
and no breakdown of universality has been observed [7].
This may be due to the fact that the spiral lattice trees are
minority in number at the percolation threshold and un-
able to change the universality class. In the DSP model,
the presence of the directional constraint on top of the
rotational constraint might increase the number of spiral
lattice trees. Maybe, the higher number of tree like struc-
tures in the clusters generated has a non-trivial effect on
the critical properties of the DSP model at the percola-
tion threshold and leads to breakdown of universality of
the critical exponents.

Finally, the form of the scaling function Ps(p) =
s−τ+1f[sσ(p − pc)] is verified. The exponents τ and σ
are estimated using the scaling relations β = (τ − 2)/σ,
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Fig. 9. Plot of the scaled cluster size distribution Ps(p)/Ps(pc)
versus the scaled variable sσ(p − pc) for different values of p
on the triangular lattice. The value of σ is taken as σ = 0.427.
The cluster size s changes from 64 to 16384. The data plot-
ted correspond to p − pc = 0.007(×), 0.005(�), −0.035(�),
−0.04(♦), −0.045(�), −0.05(∗), −0.055(�), −0.06(©). A rea-
sonable data collapse is observed.

γ = (3 − τ)/σ, δ = (4 − τ)/σ, and η = (5 − τ)/σ and fol-
lowing the same technique described in reference [1]. The
estimates of τ and σ are obtained as τ = 2.16 ± 0.02 and
σ = 0.427±0.003 respectively. The errors quoted here are
the propagation errors. On the square lattice, the values
of τ and σ were obtained as ≈ 2.16 and 0.459 respectively.
Note that, the value of τ is the same as that of the square
lattice whereas σ differs on the two lattices. The scaling
function form is verified through data collapse by plot-
ting Ps(p)/Ps(pc) against the scaled variable sσ(p − pc)
in Figure 9. The cluster size s changes from 64 to 16384
and (p−pc) varies from 0.007 to −0.06. A reasonable data
collapse is observed. The scaling function form is similar
to that of the square lattice. The height of the function
remains almost the same but the width is slightly smaller
than that of the square lattice function. The lesser width
of the scaling function Ps(p) is just a consequence of the
lesser value of σ on the triangular lattice.

4 Conclusion

The directed spiral site percolation is studied on the
triangular lattice and the results are compared with that
of the square lattice. Clusters on the triangular lattice are

found more compact and less anisotropic than the clusters
on the square lattice. Interestingly, it is also found that
the values of the fractal dimension and some of the crit-
ical exponents on the triangular lattice are significantly
different from the square lattice values. This might be
due to different scaling behaviour of some of the finite
clusters below percolation threshold on the two lattices.
As a consequence, the DSP model exhibits a breakdown
of universality between the square and triangular lattices
in 2D. The values of the critical exponents on both the
lattices satisfy the scaling relations between the moment
exponents (γ, δ, η). The hyperscaling relations were satis-
fied on the square lattice but they are “marginally” satis-
fied on the triangular lattice. The exponents are not only
different on the square and triangular lattices but also dif-
ferent from other percolation models like OP, DP and SP.
Directed spiral percolation is expected to occur in disor-
dered systems when both rotational and directional force
fields are present.
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